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A problem of non-smooth mechanics, the expansion of the stress potential for heteromodular media 

with respect to the components of the strain tensor, is formulated and solved. New characteristic 

relationships and the form of the functional dependence of the elastic moduli and the phase of the 

similitude of the deviators on the relationship between the invariants of the strain tensor follow from 

the proposed expression. Inversion of governing dependencea of the stresses on the deformations is 

carried out. The nature of the coupling between the generalized moduli of elasticity and the phase of 

the similitude of the deviators during deformations is demonstrated. Dual formulations of the theory 

and the energy principles are presented. 

1. THE ASYMMETRY AND NON-SMOOTHNESS OF THE HETEROMODULAR 
LAW OF ELASTICITY 

IN THE case of the simplest heteromodular law of elasticity [l+ 

(1.1) 

the stress potential, that is, the specific potential energy of strain, has the form (E’ and E- are 
the elastic moduli under compression and extension, respectively) 

u= HE-e’, 

1 

&SO 

)$E+e2, ~20 
(1.2) 

It is obvious that relationship (1.1) is not smooth at zero and that the potential U(E) (1.2) is 
not analytic and that it is not an even function. 

In the general case we assume that the elastic potential W(E) for isotropic, heteromodular 
media (HMM) is a homogeneous function of the second degree of homogeneity with respect 
to the components of the strain tensor 

E = (Q), w(o) = 0, W(E) 2 KEiiEii, K = COnSt > 0 

Such a potential has been considered in [4] under the assumption that the tensor is linear. 
As a consequence of the effects of heteromodularity, the potential W(E) is also not an 

analytic function at zero and its symmetry group cannot include inversion. 
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Actually, as a consequence of Euler’s theorem on homogeneous functions, we have 

W(E) = )/2QgEiEj 9 Qc = &(detlkti -~$$ll= 0; 1, j,k = 1,2,3) 
i J 

(1.3) 

The coefficients Qii are homogeneous functions of zero degree of homogeneity which are 
determined by the values of the generalized moduli of elasticity and the phase of the similitude 
of the deviators. In the first place, since Q,(E) + Q,(-E), according to the definition of a HMM, 
then, consequently, the function W(E) cannot be expanded in a Taylor series at the point E = 0. 
Similarly, according to (1.3), W(E) f W(-E), that is, the function W(E) does not have a centre of 
inversion. 

The asymmetry of isotropic HMMs admits [5] of the possibility of the existence of two 
different versions of these which have opposite heteromodularity signs, that is, opposite signs 
for the difference in the corresponding elastic moduli and the phases of the similitude of the 
deviators. Here, media with different absolute values of these differences can have mirror- 
symmetry properties while being the antipodes of one another. A mixture containing equal 
amounts of the antipodes is indistinguishable from a conventional elastic body. 

Models of HMMs usually arise when weakly non-linear strain diagrams are replaced by 
piecewise linear diagrams. In this case, breakdown of the closeness of the solutions of prob- 
lems corresponding to the smooth and uneven (heteromodular) models does not occur [6]. 
In the general case, non-linear strain diagrams can be approximated by a broken line. This 
enables one to reduce an initial non-linear problem corresponding to a smooth model to a set 
of problems in the mechanics of HMMs, the solutions of which must be joined together. 

The potential W(E) is a piecewise-analytic function and cannot be expanded in a power 
series. Assuming tensor linearity, this potential has been directly determined in [4, 71 on the 
basis of experimental strain diagrams obtained under proportional loads. 

2. EXPANSION OF THE STRESS POTENTIAL OF AN HMM, W(E) IN SERIES 

The symmetry group of the potential W(E) is identical with a proper rotation group. Let us 
represent the potential W(E) in the form of a series in functions which form a basis of 
representations of this group. By virtue of (1.3), we have 

W(E) = r2F(ellr, EZ/T, E&J (2-l) 

The function F is defined on the surface of a sphere of radius r =I E I= ~(E~~Q.) = 1 with its 
centre at the point (0, 0,O) in the space of the principal strains. 

Surface spherical functions form the basis of representations of the spatial rotation group. It 
is obvious that F is a function with an integrable square of the modulus on the surface of the 
given sphere. Then [8], this function can be expanded in series, which converges in the mean, 
in an orthogonal system of surface spherical functions yrn 

In a canonical local system of coordinates, the axes of which coincide with the principal axes 
of the strain tensor, the functions Y,‘” can be expressed in terms of the principal components of 
this tensor. 

In fact, by using the integral representation for the spherical functions 

r,m = (--i)“(l+m)! x j X’ cos mu& 
2xr’l! _x 

m=Ol 1 , 9..., 
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yIm=_ im(l-m)! ’ X’sin mu&t, m = -1 -2 I 27dl! _Ic 
. ,*.., -1 

X=Ej+iE,cosUCiEZsinu; (i’=-1) 

which follow from the general form of the solutions of Laplace’s equation 191, expansion (2.2) 
can be written in the form 

CO = ap, c, -_ a,“‘, c* =&-I), c3 = a,(O) 

Cl2 = C21 = 34-21, c, = c3, = gzy’, Cl3 = c31 = j$zp 

Cl, = 34 - )$a$“), c22 = -3ai2’ - J$ai”, c33 = a$” 

Cl11 = - j$ai” +1Jai3’, cz2 = -%a$-‘) -15ai”‘. c333 =a$‘) 

cpJ=- #a$‘) - 45ai3’, clj3 = 6a$‘), c2tl = -#a$-” + 45a$“) 

c233=6a$-‘), C3tl =-~aj0’+15a~2’, C322 =-j$ai”)-15a:2) 

c123 = cl32 = c213 = hl = $12 = c321 = 5&2’ 

Expansion (2.3) is invariant under rotation. According to the transformation rule Ed =&,t$, 
the coefficients of the series in (2.3) satisfy the equalities 

c; = 4&, c;t = q&q,:c,, c;m = q&I;,&c& q#) = cos(lJj) (2.4) 

In these relationship, Ii, 1; are the vectors of the orthonormalized basis of the initial and 
the new canonical coordinate systems respectively. On rotating the canonicat system of co- 
ordinates through a right angle in an anticlockwise sense around the E,, e, and E, axes, we 
have 

In this case, we obtain 

CozBo, C~=C2=C3eB~, C~1=C22=C33”0 

Cl2 = Cl3 ~~23 E B2, ~111 ~~222 ~~333 z B3 

Hence, expansion (2.3) acquires the form 

F(E~ /r,E2 IF-,E~/T)= BO -B2 +(BI -MB3 -3g4)6+ 

+B2t2 + B4k3 + (g s3 + 2B4 )q3 + 11.. 
(2.5) 

The invariance of the potential W(E) with respect to inversion is attributable to the terms in 
series (2.5) which depend on the dimensionless scalar parameters 5 and XI 

~=I,/& lel47: Tj=r,u;/J7;, l@Cl 

(Ii = E&, I2 = EC&+ I3 = EijEjkE6.) 
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The parameter 5 characterizes the relationship between the bulk and the mean shear strains 
in an elementary volume of the medium while the parameter IJ additionally takes account of 
the relationship between the maximum and mean shears. Where necessary, analogous 
parameters of one of them are introduced into the treatment in the analysis of experimental 
strain diagrams of materials, the characteristics of which depend on the form of the stressed 
state [lo, 111. 

The terms of the series, corresponding to I= 4,5, . . . from (2.2), which have not been written 
out in expansion (2.5), express the finer details of the change in the function F depending on 
the form of the strain, that is, on the values of the parameters 5 and q. Confining ourselves to 
the terms of the series in (2.5) and introducing the appropriate notation 

we obtain 

, IEbO 

It is clear that, if we require that the expression for W(E) should be invariant under inversion 
&I = -E,, then W(E) becomes the classical elastic potential. The heteromodularity is described 
by the terms in expression (2.6), starting with the third term, which may be considered as a first 
approximation [7,12,13]. 

The realization of the potential W(E) in the form (2.6) using expansion (2.3) of the function 
F(E~ /r, e2 /r, E, /r) can be considered as a basis for carrying out systematic investigations of 
the effects of heteromodularity in isotropically elastic media. 

3. IMPORTANT RELATIONSHIPS IN THE MECHANICS OF HMMS 

Using expression (2.6) and the conditions imposed on W(E), the governing equations 
relating the stresses to the strains can be written as follows: 

00 = (A - V / 5 + 3C&1~6~ + (&l- Vt - as3 - @13 )Ev + s@ikEjk / 6, 

tEbO; b,y=o, lEl=O 
(3.1) 

In (3.1), the stress and strain tensors are coaxial. 
For the inversion of (3.1), we make use of the general form of the expansion of the strain 

tensor in the basis of the space of the coaxial stress tensors [14-161 

1 a1 eij =~~iaa,+Yc“sX 
I& dx --- tgx-9 
z aa, hlj 

(3.2) 

Expressions for the generalized bulk modulus K+#,, r\), shear modulus G + ~(6, rl) and 
phase of the similitude of the deviators x(&q) can be obtained by convolution of the product 
of relationships (3.1) with the tensors 6= (6ij), o =(o,,) and trcr’, respectively. As a result 
taking account of the equality 

and the expression for the trace of the power of the strain tensor using the Hamilton-Cayley 
theorem, we obtain 
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Hence, the governing equations relating the strains and the stresses are finally written in the 
following form 

lab 0: &g = 0. Id= 0 (lol=~~) (3.4) 

In relationships (3.4), the generalized moduli and phase of the similitude of the deviators are 
defined by (3.3) and by the relationships 

The values of the parameter 5 and q are found from the system of equations 

(3.5) 

(3.6) 

Here 

HtS.70 = 4-E + w<h>I 

@(Lr\l= 8g3tW+ ts3 -~+%~3}-1f%~3f12~6 -12b13(1-52)- 
-1+952 - 15E4 + 356]+ 2~g2(5*rQ(12&J3 + 3 - 14!$ + 3t4> + 

+p%(5,r\)13n3(3 + 7k2) + 35 - 27e3 + 6C 11 

In the case of plane strain, the parameters 5 and TJ are inter-related q3 = )11&3 - c2), and the 
solution of system (3.6) reduces to the solution of just a single equation of this system. 

In the general case, according to the last relationship of (3.3), the deviators of the stress and 
strain tensors are not similar in that the phase of their similitude x when p #O is non-zero 
and the ratios of the principal components of the deviators of these tensors are not equal to 
one another. In the case of a uniform triaxial compression or extension z== 0, S, = 0, shear 
strains do not arise in the medium according to (3.6): k = TJ3, $ = T1/43. In the case of pure 
shear Jl = 0, shear strains are accompanied by bulk strains. Under simple shear Poynting and 
Kelvi~Wertheim effects occur, In the ease of a pro~rtional change in the stresses oij = wi, 
t = const, the parameters 5 and ‘11 remain constant and, consequently, the strain diagrams (3.4) 
are rectilinear, 
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The Potential W(e) can be considered as a function of the state parameters Z,, y and x-. me 
differential relationships, relating the generalized moduli of elasticity and the phase of the 
similitude of the deviators are the condition for this 

352r\29’s + 2~1~0 -52)lcos~(G + x)1; + (l- 5~~) 
i 

3s2 7 ‘p; + 21~0s x(G + w)]; 
3-5 i 

= 0 

471~ (3 - c2 )[sin x(G + ~01; + cJ= cos3y,cp~ + 4(1- @j3)[sinX(G + w)]; = 0 

65q2(3 -(*)bin x(G+ y>lE = fi(3- {2)X cos3~,[co~~(G + w)]’ + 11 (3.7) 

+355113-l * -[sin x(G + yOl:, + 36$ sin x (G + w) 

Relationships (3.7) determine the nature of the interconnected change in the moduli and 
phase when there is a change in the parameters 5 and 11 during the strain. According to (3.7) 
when there is a proportional change in the components of the stress tensor, the phase of the 
similitude of the deviators x is equal to zero and the governing relationships (3.4) and (3.1) 
are linear. The parameter 11 can only be constant when there is a proportional change in 
the stresses. If the generalized bulk modulus is an increasing function of 17, the product of the 
generalized shear modulus with cos x is a decreasing function of q and x,, > x, and vice versa. 
We note that signcpi =-signp. Relationships (3.7) also determine the possible forms of the 
strain diagrams of HMMs. 

4. DUAL FORMULATIONS. ENERGY PRINCIPLES FOR HMMS 

The equalities 

W(E) + w’(0) = C$&G, w*(O) = SUP&$ - W(E)] (4.1) 

hold in the case of the potential W(E). 
Here, by virtue of Euler’s theorem 

W(E) = w’(O) = )/zaij”,j (4.2) 

The Legendre transformation [6] of the potential W(E) is involute 

W(E) = sup&& - w’(O)], Eii = &‘* / 80, (4.3) 

Equalities (4.1)-(4.3) constitute a dual formulation of the theory of HMMs which uses the 
potentials W(E) or W*(E). As can be seen from (4.2) and (4.3), this formulation for HMMs 
(just as in the classical theory of elasticity) includes the Clapeyron formula and the equality of 
the stress potential and the strain potential. 

The principle of virtual work with the usual assumptions [17] also admits of a variational 
formulation 

L = inf, I(u), I(u) = j W(E(U))dU - J Fudu - j Puds 
V V 

SP 

E(u) = )$<aui I aXj + aUj I ax,) 
(4.4) 

where u(x)=O&h uz(x>, dx)) are the kinematically admissible displacement fields in a 
Eulerian system of coordinates x = (x1, x,, x3) : u = u,, on a part of the boundary S,, = S-S, of 
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the domain V occupied by the continuous medium and F and P are the densities of the mass 
and surface forces. 

The dual problem to (4.4) is written in the form 

T = supa r’(a), f’(a) = j W’(a)du- j(on)u& (4.5) 
V %I 

where Q are the statically possible stress fields: 8oij /ax, + 4 = 0 in domain V, oijnj = 4 on the 
surface S,, and n is the unit vector of the outward normal to the small area ds. 

By analogy with the case of linear elasticity 1171, we have 

r=7’, inf, I(u) = sup, f l (CT) 

When account is taken of (4.2) and (4,6), we obtain the Clapeyron theorem 

(4.6) 

(4.7) 

It is also obvious that, as a consequence of (4.29, the extremal problems (4.4) and (4.5) 
are the Lagrange and Castigliano energy principles for I-MIS&. Generally speaking, Betti’s 
work reciprocity theorem is not satisfied apart from the case of a proportional change in 
the stresses at all points of the domain V. This also holds under the assumption of tensor 
linearity [4]. 

We note that this expansion of the potential W(e) can also be adopted as a basis for 
developing the model of a granular medium, previously proposed in [18]. 
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